





# Soil Management Plan for the Saanich Transit Centre Project in Victoria, BC

October 2<sup>nd</sup>, 2025

Submitted to: BC Transit Prepared by McElhanney

# Contact

Brian S. White P.Eng 778-746-7409 bwhite@mcelhanney.com

### **Address**

500 – 3960 Quadra Street, Victoria BC Canada, V8X 4A3

Our file: 2241-24138-00

# Your Challenge. Our Passion.

| REVISION DESCRIPTION |          | DATE (YYYY-MM-DD) | ISSUED BY |  |
|----------------------|----------|-------------------|-----------|--|
| 00                   | Final    | 2025-09-26        | BSW       |  |
| 01                   | Revision | 2025 - 10 -24     | BSW       |  |
|                      |          |                   |           |  |

# **Contents**

| 1.   | Introduction | on                                                               | 5  |
|------|--------------|------------------------------------------------------------------|----|
| 1.1. |              | Objectives                                                       | 5  |
| 2.   | Backgrour    | nd Information                                                   | 5  |
| 3.   | Applicable   | Legislation, Regulations, Standards & Permits                    | 10 |
| 3.1. |              | Applicable Soil Standards                                        | 10 |
| 3.2. |              | Regulatory Submissions                                           | 11 |
| 4.   | Roles and    | Responsibilities                                                 | 12 |
| 4.1. |              | BC Transit (The Owner)                                           | 12 |
| 4.2. |              | BC Transit's Representative (McElhanney)                         | 12 |
| 4.3. |              | The Construction Manager (CM)                                    | 12 |
| 4.4. |              | The Contractor                                                   | 12 |
| 5.   | Soil Manag   | gement Procedures                                                | 13 |
| 5.1. |              | General Soil Handling                                            | 13 |
| 5.2. |              | Soil Relocation, Disposal, and Disposal of Soils                 | 14 |
| 5.3. |              | Asphalt and Concrete Management                                  | 15 |
| 5.4. |              | Underground Utility Infrastructure Removal                       | 15 |
| 5.5. |              | Stockpile Management                                             | 15 |
| 5.6. |              | Chance Find Soil Contamination and Characterization Requirements | 16 |
| 5.7. |              | Chance Find Archaeological and cultural resources                | 16 |
| 6.   | Surface an   | d Groundwater Management                                         | 16 |
| 6.1. |              | Discharge of Groundwater:                                        | 17 |
| 7.   | Profession   | nal Statement                                                    | 18 |
| 8.   | Limitations  | s of Report                                                      | 19 |
| 9.   | Legal Disc   | laimer                                                           | 19 |
| 10   | Reference    | s ·                                                              | 20 |

# **Tables**

| Table 1. General Soil Stratigraphy                                    | 7  |
|-----------------------------------------------------------------------|----|
| Table 2: Summary of Soil Quality Within the Project Boundaries        | 9  |
|                                                                       |    |
|                                                                       |    |
| Figures (in Text)                                                     |    |
|                                                                       |    |
| Figure 1: iManBC summary of groundwater wells within 500m of the Site | 11 |

# **Appendices**

Appendix A

# **List of Acronyms Used**

BC British Columbia **BC CSR** British Columbia Contaminated Sites Regulation BC EMA British Columbia Environmental Management Act **BC ENV** BC Ministry of Environment and Parks **BC HWR BC Hazardous Waste Regulation BMP Best Management Practices CEMP** Construction Environmental Management Plan CM Construction Manager

CSAP Contaminated Sites Approved Professional

EM Environmental Monitor (for Contractor)

SMP Soil Management Plan

SRCR Site Risk Classification, Reclassification

SRN Soil Relocation Notification

IL Industrial Land Use

mbgs meters below ground surface

NIR Notification of Independent Remediation
QEP Qualified Environmental Professional
RLLD Residential Low Density Land Use

STC Saanich Transit Centre

# 1. Introduction

McElhanney Ltd. (McElhanney) was retained by BC Transit to provide a Soil Management Plan (SMP) for the Saanich Transit Centre Construction Project (the Project). BC Transit is completing the necessary work to prepare a five-acre site of BC Transit owned properties for potential future development (the Site); see *Figure 1* in *Appendix A*. The Site is located between Glanford Avenue and Commerce Circle within the Corporation of the District of Saanich (Saanich), BC. Site preparation activities are part of long-term plan to maximize the industrially zoned properties for a conventional operations and maintenance facility which will be the future Saanich Transit Centre (STC). This Project is focused on site preparation including decommissioning and demolition of the existing structures and removing any incumbrances associated with the historical activities and abandoned utilities on the Site.

McElhanney completed a Stage 1 Preliminary Site Investigation (PSI) (McElhanney, 2025) in April 2025 and Stage 2 PSI in September 2025 (McElhanney 2025) as part of the overall Project. The results from the Stage 2 PSI did not identify the presence of contamination in the soils within the study areas. Historical reports were reviewed as part of the Stage 1 PSI and used to inform Stage 2 PSI decision-making. The excavation limits and associated investigation locations have not been defined within this SMP. The SMP has been written in general accordance with the BC Contaminated Sites Regulation (CSR).

McElhanney understands that during the delivery of the Project BC Transit will retain a Construction Manager (CM) to manage the demolition and decommissioning of utilities on the Site. The CM will develop work packages to retain qualified contractors (the Contractor) to remove, manage and dispose of building materials, excavate soils, remove and cap utilities, backfill excavations, and other services as determined by BC Transit. Soil movement will require regulatory compliance and coordination with soil disposal facilities and private landowners as applicable. This SMP outlines the requirements for soil handling and temporary storage on and off Site. Options for off-Site disposal will be determined in consultation with the CM ahead of work packages released for site demolition and utility decommissioning.

This SMP is a living document and will be amended from time to time, as required, as additional information becomes available.

### 1.1. OBJECTIVES

The SMP will provide information and direction for managing soil that will be encountered during the demolition phase of the Project. The purpose of the plan is to develop clear instructions, directions and guidelines that will assist site personnel in the classification, management, and handling of soil that must be removed from the Site as a result of the Project.

# 2. Background Information

Previous environmental site assessments have been conducted at the Site from 2004 to 2024. All historical reports have been summarized in McElhanney's 2025 Stage 1 PSI (McElhanney, 2025). Each historical assessment was completed for a specific reason several included the characterization of soil and/ or

groundwater. Those soil and groundwater results were reviewed, compared to current standards and summarized in McElhanney's work plan for BC Transit. The review of the historical documents did identify data gaps. Those data gaps were investigated from May to September 2025 and have been summarized in McElhanney's Stage 2 PSI for the Project Site. The Stage 2 PSI did not identify the presence of contamination however the investigation did not focus on possible classification for off site soil disposal options. This SMP provides possible soil management scenarios for the disposal of soils. When the CM is retained for BC Transit this SMP will be revised to reflect demolition sequencing and overall volume of soil to be managed.

The general soil stratigraphy encountered during historical and 2025 McElhanney environmental and geotechnical investigations is presented in *Table 1*. Figure 4A and 4B from the Stage 2 PSI shows all of the current and historical investigation locations. This image has been included in Appendix A. for reference.

Table 1. General Soil Stratigraphy

| Soil Type            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Concrete/<br>Asphalt | The majority of the Study Area was either paved with asphalt or covered with concrete slabs. Asphalt and concrete wearing surfaces observed during drilling were not all supported by crushed base gravel as would be typical in pavement structures                                                                                                                                                                                                                                                                           |
| Fill                 | Shallower horizons up to 0.9m deep appeared to comprise imported sand and gravel fill. Some of this material may be suitable for reuse if it meets gradation specifications. Some areas contained what appeared to be imported sand and gravel mixed with siltier material.                                                                                                                                                                                                                                                    |
| Sand and<br>Silt     | This unit contained varying gradations of silt and sand with traces of clay and/ or gravel. It was typically non plastic and varied in thickness from 0.5 m to 3 m. These deposits are inferred to be Capilano Sediments                                                                                                                                                                                                                                                                                                       |
| Silt                 | This finer grained unit was observed in nearly every borehole and often contained some to trace clay and gravel. Brown coloured silt units generally appeared to be firm to hard. Grey to brown grey silt deposits varied from soft to hard. The grey silt units encountered in the northwest quarter of the site (BH25-05, 06, 07, 08, 09) became increasingly soft and wet below 3m. Shallower horizons of this unit were mottled orange-brown which may be an indicator of oxidation from intermittent groundwater seepage. |
| Sand and<br>Gravel   | Coarser gradations were observed below the silt unit in several holes (BH25-01, 02, 04). These deposits ranged from compact to very dense and were very wet. It's inferred that these units were glacial till overlaying bedrock.                                                                                                                                                                                                                                                                                              |
| Bedrock              | Inferred depth to bedrock varied from 1.2m to 5.2m in BH25-02, 03, 11, 14,15. Bedrock geology could not be verified due to poor sample recovery. It's inferred that bedrock generally dips to the north east based on surface topography. However, based on drilling refusal depths the bedrock surface topography is irregular and may vary in grade from 2% to 10% in various directions.                                                                                                                                    |

The Stage 2 PSI analytical results did not identify any concentrations of PCOCs above the applicable BC CSR soil standards for Low Density Residential (RL<sub>LD</sub>) and/or Industrial (IL) land uses in soils within the planned Project work area. Figures 6A and 6B representing the soil analytical results from the Stage 2 are presented in Appendix A. A summary of soil quality within the Project boundaries is presented in *Table 2*. Note the classification of soil identified for off site disposal may require additional analysis to determine if the soil receiving site can accept this material.

Table 2: Summary of Soil Quality Within the Project Boundaries.

| General<br>Location        | McElhanney<br>Test Holes                                                                      | Historical<br>Geotechnical Test<br>Holes/Rock Probe                                                          | Soil Type Soil Quality                 |     | Depth Below Existing Ground<br>Surface |                            | Preliminary Soil Volume<br>Estimate (m³) |
|----------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|----------------------------------------|----------------------------|------------------------------------------|
|                            |                                                                                               | Holes                                                                                                        |                                        |     | From (m)                               | To (m)                     |                                          |
| 4212<br>Commerce<br>Circle | SVP25-10,<br>SVP/MW25-11,<br>SVP25-12,<br>MW/SVP25-13<br>MW/SVP25-14,<br>SVP25-15,<br>BH25-16 | BH1,<br>BH2,<br>AH/MW22-07,<br>MW04-8,<br>MW3,<br>MW10-09,<br>MW10-10,<br>MW6,<br>BH7,<br>AH/MW22-13,<br>MW5 | Sandy Silt                             | TBD | Under Asphalt                          | Trench Depth or<br>Bedrock | TBD                                      |
| 4206<br>Commerce<br>Circle | BH25-01,<br>MW/SVP25-05,<br>BH25-07,<br>MW/SVP25-07,<br>BH25-08,<br>MW/SVP25-09               | AH/MW22-02,<br>MW10-1,<br>MW13-4,<br>MW13-3                                                                  | Sandy Silt                             | TBD | Under Asphalt                          | Trench Depth or<br>Bedrock | TBD                                      |
| 4210<br>Commerce<br>Circle | BH25-02                                                                                       | No test holes advanced                                                                                       | Silt and Sand                          | TBD | -                                      | -                          | TBD                                      |
| 4212 Glanford<br>Avenue    | BH25-04                                                                                       | No test holes advanced                                                                                       | Silt and Sand                          | TBD | -                                      | -                          | TBD                                      |
| 4216 Glanford<br>Avenue    | BH25-03                                                                                       | No test holes advanced                                                                                       | Sand and<br>Gravel/ Blast<br>rock fill | TBD | -                                      | -                          | TBD                                      |

### Notes:

a - Historical geotechnical test hole or rock probe hole location advanced by EXP Services (2022), SNC Lavalin (2010), and PHH ARC (2005).

<sup>\*</sup>Preliminary soil volumes are based on soil observations and measurements made at each test hole during the field investigation. Test holes advanced are representative of the soil encountered at each test hole location and soil types/lithological boundaries have been inferred between test holes.

TBD - to be determined. Volume estimates will be determined with the Contractor at an upcoming stage in the project. Soil Quality will be determined based on future soil relocation or disposal requirements, should they arise.

# 3. Applicable Legislation, Regulations, Standards & Permits

The Project is located in the province of BC. The Contractor is responsible for being aware and compliant with the conditions and requirements of the Project regulations and any permits that might need to be obtained to proceed with the Project.

Provincial Acts and Regulations (including their amendments) that are applicable to soil movement for the Project include:

- Environmental Management Act (EMA) (BC 2003a),
  - Contaminated Sites Regulation (CSR) (BC 1996a)
  - Hazardous Waste Regulation (HWR) (BC 1998)
- Occupations Health and Safety Regulation (BC 1997) pursuant to the Workers Compensation Act (BC 1996c),
- Transportation of Dangerous Goods Act (BC 2003b).

The framework for developing the applicable soil standards is provided below.

### 3.1. APPLICABLE SOIL STANDARDS

Soils excavated during the construction of the Project must be managed in accordance with the BC EMA, its supporting regulations: BC CSR and BC HWR, and associated protocols and guidance documents. The Site use is currently zoned as light industrial, and the proposed future use of the Site is industrial; therefore, under the definitions within the BC CSR, the applicable land use for the Site is Industrial land use (IL). If soil is disposed of at a provincially permitted facility, it shall meet the permit requirements of that facility and be accepted by the operator. For the purposes of disposal or off-site relocation, results were considered in comparison to BC CSR Schedule 3.1 standards for Residential Land Use (Low Density) (RLLD) and BC HWR. BC CSR Schedule 3.1 consists of the following three parts:

- Part 1 Matrix numerical soil standards,
- Part 2 Generic numerical soil standards to protect human health, and,
- Part 3 Generic numerical soil standards to protect environmental health.

The following matrix standards included in Part 1 of Schedule 3.1 were considered to apply to the Sitel:

- Intake of contaminated soil (mandatory),
- Groundwater used for drinking water (mandatory),
- Toxicity to soil invertebrates and plants (mandatory),
- Groundwater flow to surface water used by freshwater aquatic life

The following matrix standards included in Part 1 of Schedule 3.1 were considered to apply in assessing soil quality for soil relocation or disposal:

- Intake of contaminated soil (mandatory),
- Groundwater used for drinking water (mandatory).
- Toxicity to soil invertebrates and plants (mandatory),

- Groundwater flow to surface water used by freshwater aquatic life, and,
- Groundwater used for irrigation

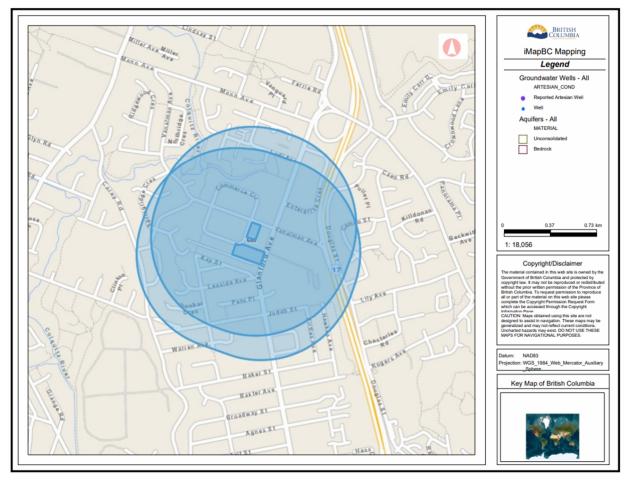



Figure 1: iMapBC summary of groundwater wells within 500m of the Site.

### 3.2. REGULATORY SUBMISSIONS

In accordance with Section 54 of the EMA and Section 57 of the BC CSR, excavation of contaminated soils, if confirmed, requires a Notification of Independent Remediation (NIR) Initiation to be submitted to a BC ENV Director. The NIR will trigger the requirement to submit a Site Risk Classification Report in accordance with Protocol 12: Site Risk Classification, Reclassification (SRCR) and Reporting. If concentrations of contaminants exceed upper cap concentrations outlined in BC ENV Protocol 11: Upper Cap Concentrations of Substances, then an Exposure Pathway Questionnaire must also be submitted.

Environmental permits/authorizations related to the management of soil will be undertaken by McElhanney on behalf of BC Transit for the Project, as required. The CM will be required to participate in the planning for soil movement and identify any lead times needed for soil relocation for the duration of the Project.

# 4. Roles and Responsibilities

The following sections provide direction associated with the roles and responsibilities for the SMP and the associated reporting and communication for the soil management aspects for this Project.

### 4.1. BC TRANSIT (THE OWNER)

BC Transit owns and operates the Site. BC Transit and its designated representative's environmental responsibilities include:

 Project oversight to assure that the Project is being planned, permitted, and implemented in accordance with applicable environmental legislation, project-specific permits, best practices, and Contract requirements.

# 4.2. BC TRANSIT'S REPRESENTATIVE (MCELHANNEY)

BC Transit will retain McElhanney to provide consulting services for soil management for the duration of the construction of the Project. McElhanney's qualified environmental professional (QEP) will work with the project team to determine the necessary requirements for soil relocation from the Site. When the CM is retained for the project McElhanney will work with the CM to update the SMP.

## 4.3. THE CONSTRUCTION MANAGER (CM)

The successful CM is responsible for the following:

- Coordinating and communicating with BC Transit, McElhanney, and The Contractor.
- Comply with all regulatory authorizations, approvals, permits, Acts, and bylaws associated with the Project,
- Orientate staff and subcontractors and provide adequate training on SMP contents and implementation of procedures and best management practices for soil movement (BMPs),
- Ensure all hazardous and nonhazardous wastes generated for construction, be disposed of in accordance with the applicable provincial legislation and local municipal bylaws,
- Notify BC Transit and McElhanney should excavation works for foundation removal, retaining walls, historical utilities, etc. encounter suspect soil that may have been contaminated as a result of the activities on Site;; and
- Review all environmental reports/briefings prepared for the Project.

### 4.4. THE CONTRACTOR

The CM will retain qualified Contractor(s) to perform the scope of the work for the Site. The successful Contractor(s) will be responsible for the following:

- Implement the SMP without compromise to the environment from construction activities associated with the Project,
- Inform BC Transit and McElhanney if suspected or unidentified contamination is encountered during construction and demolition activities

- Facilitate quality assurance soil sample collection by BC Transit and/or their designate as required
  by providing equipment and controls as necessary to perform sampling safely including but not
  limited to excavating equipment and traffic control; and
- Confirm acceptance of contaminated soils with the soil disposal facilities and provide documentation to BC Transit -EM and McElhanney of waste authorization forms, facility weigh slips and volume estimates for acceptance as necessary.

# 5. Soil Management Procedures

The following measures are provided to manage excavations and handle resulting soil materials. The project preference would be to manage each generated soil stockpile on its source parcel.

To aid with on-Site stockpiling of soils during construction, the transport of soils for off-Site disposal and/or to a dedicated temporary stockpile area(s) is recommended during the shift in which the soils are excavated. Ideally the soils would be loaded directly onto awaiting trucks and transported to an approved facility. However, as there is a potential for change finds of suspected and contaminated soils or if the work schedule changes, there may be a need to temporarily stockpile daily quantities of soils during the Project's working hours. The use of temporary stockpiles within the immediate work area must be approved by BC Transit or BC Transit - Representative. Approval must be provided prior to the placement of soils and may include placement on an intact asphalt surface within designated areas and/or placement on 6 mm or greater poly sheeting. If the use of temporary stockpiles within the Project is required, the soils must be transported outside of the immediate work area or be protected with poly sheeting at the end of each shift. BC Transit or their representative will work with the Contractor, if disposal or relocation is required. For the purpose of the SMP plan, the CM and Contractor must consider that temporary stockpiles remain on the parcels in which the access soils have been generated.

### 5.1. GENERAL SOIL HANDLING

Historical testing carried out by other consulting companies and testing by McElhanney during 2025 the Stage 2 in 2025 (McElhanney, 2025) did not identify any soils within the project area where soil concentrations exceed the applicable on-Site standards should they remain within the parcel limits. Soil generated from construction within these areas that require off site disposal will be managed in accordance with requirements of the BC EMA and the BC CSR, as applicable. These soils must also consider soil receiving sites requirements for soil acceptance. In several instances current soil testing results may not be extensive enough to allow for soil disposal. Once the CM is retained McElhanney will work with the CM to identify areas where additional soil characterization is needed to inform off site disposal requirements.

. When retained, the Contractor will follow the following general soil handling requirements:

- Verify with BC Transit -EM the soil disposal or reuse options and disposal facilities as necessary,
- Inspect and maintain all heavy equipment (excavators, wheel loaders, trucks, etc.) used to
  handle soils that exceed the applicable standards or are suspected to contain contaminants
  above standards, decontaminating the equipment or prior to it leaving the Project Site.
  Decontamination at a minimum will include the removal of bulk soil buildup on tracks, buckets
  and wheels,

- Soils are not to be mixed with asphalt, concrete or other construction debris. Those wastes are to be handled separately, and
- Dispose and/or reuse soils according to its environmental characterization and geotechnical suitability for reuse. As required, soils deemed to exceed the applicable environmental standards will be shipped to a permitted disposal facility with appropriate tracking paperwork.

### 5.1.1. Soil Testing at Non-Schedule 2 Use Properties

No analytical testing of soils at the three non-Schedule 2 parcels; 4212 & 4216 Glanford Avenue and 4210 Commerce Circle, has been conducted. During construction activities on these three parcels, excavated soil deemed in excess and requires off site disposal should be stockpiled and sampled by the McElhanney to confirm or refute the presence of contaminants for disposal facility acceptance. Soils shall be stockpiled on the parcel from which they were generated. Disposal options are dependent on the analytical results of the soil testing. The CM and the Contractor should allow stockpiles to remain in place untouched for up to 10 business days prior to disposal. This time is to allow for associated environmental chemistry to be completed and approval at the soil receiving site.

### 5.2. SOIL RELOCATION, DISPOSAL, AND DISPOSAL OF SOILS

Soils excavated during the demolition and decommissioning of utilities for the Project that have been classified as RL<sub>LD</sub>- quality can be re-used on-Site with approval of a geotechnical engineer. Should excavated soils classified as RL<sub>LD</sub>- quality require off-Site disposal, these soils will need to be managed at an acceptable receiving site capable of receiving RL<sub>LD</sub>- quality soil in accordance with the BC CSR and EMA and will be required to meet the chosen receiving site's acceptance criteria.

Based on the results of the 2025 Geotechnical Investigation completed by McElhanney (McElhanney, 2025), McElhanney understands that the soils consisting of natural sand and fill materials (assuming the fill materials consist of primarily granular fill with limited debris and/or fine materials) encountered at the Site can be re-used as backfill of former foundations, trenches and other excavations within parking areas during the Project from a geotechnical perspective. Should import materials be required to build parking surfaces, or for backfill site generated clean (free of rebar, hydrocarbon staining, etc...) pulverized (less than 150 mm in diameter) concrete may be used for back fill in select areas as a substitute for 75 mm pit run material. Typical details have been provided on Figure 1 – Demolition Plan - Appendix A for reference. Soils consisting of natural clay and/or silt encountered at the Site can potentially be re-used as backfill in landscape areas depending on the condition of the soil at the time of placement and would require approval by a geotechnical professional.

### 5.2.1. Soil Relocation Schedule 2 and Non-Schedule 2 Properties

4206 & 4212 Commerce Circle have identified Schedule 2 uses as defined in the regulations outlined in Section 3. No Schedule 2 uses have been identified at 4212 & 4216 Glanford Avenue nor at 4210 Commerce Circle. The movement of soil from a Schedule 2 property triggers the submission of a soil relocation notification (SRN) form which must be submitted to ENV a minimum of one week prior to the start date of the work.

Given the history of Schedule 2 and Non-Schedule 2 activities within the Project and the complexity of the soil management regulatory process, BC Transit has decided that the preferred method for soil movement, including temporary storage and off-site disposal, is the soil be managed within the property limits it was generated. Excess soil (environmentally or geotechnically unsuitable) from those properties will be managed through off site disposal at an approved soil disposal facility. Once identified and selected with the assistance of the CM, McElhanney will work with the acceptance facility to confirm information needed is provided.

### 5.2.2. Soil Transportation and Tracking Records:

Soil relocated from the Site for off-Site disposal will be monitored by BC Transit or their representative, McElhanney. As needed, McElhanney's QEP will assist in obtaining appropriate soil movement manifests for the transport of contaminated soils from the Site to an accepted soil disposal facility. Tracking records will be maintained by the Contractor for all soil shipments leaving the Site. A copy of the tracking records and weigh sheets for each load will be provided to the BC Transit.

### 5.3. ASPHALT AND CONCRETE MANAGEMENT

Asphalt cannot be reused during demolition and decommissioning activities as backfill in any way. The CM will be required to instruct the Contractor to strip asphalt surfaces separately, stockpile and send the asphalt for recycling and reuse.

Clean pulverized (150 mm minus) concrete with no embedded steel or evidence of surface staining gathered from the demolition process could be placed at the base of the limits of the excavation. Concrete waste generated from the processing of concrete block shall not be reused on site for fill purposes.

### 5.4. UNDERGROUND UTILITY INFRASTRUCTURE REMOVAL

All existing underground utility infrastructure will be removed at the Site as part of the Project. During utility decommissioning, the possibility to encounter suspect soil is viable. If suspect soils are encountered during removal, the soils are to be segregated and stockpiled separately in the designated soil stockpile area away from non-suspect soil stockpile. Suspect soils will be sampled by McElhanney in accordance with BC ENV Protocol 19 and analyzed for parameters to support potential off-site disposal.

### 5.5. STOCKPILE MANAGEMENT

BC Transit, The CM, and McElhanney will meet to verify the plan for implementing the work including the needs for stockpile management.

As the asphalt will be removed from the Site, the CM and Contractor will be required to implement erosion and sediment control (ESC) measures as required in the Construction Environmental Management Plan (CEMP).

All five (5) parcels comprising the Project may be used for temporary soil stockpiling and soil management activities during the demolition and decommissioning of the Project. If any parcel is used by the Contractor, the Contractor will follow the general guidelines outlined below:

- The Contractor will keep accurate records of all soil movements including a track of soil volumes, dates of movement, soil quality, and portion of the Site where each volume of soil was generated from.
- Soils generated on each parcel shall not be transported between parcels.
- Soil stockpiled on-Site must be placed on an intact asphalt surface within designated areas and/or
  placement on 6 mm or greater poly sheeting. If the use of temporary stockpiles within the Project
  is required, the soils must be transported outside of the immediate work area or be protected with
  poly sheeting
- The Contractor will be required to check the daily forecast for periods of heavy rainfall. Should heavy rain be forecasted, the stockpiles must be covered with poly sheeting to prevent potential runoff.
- Soils with different environmental characteristics will be stockpiled separately as specified by BC
  Transit and McElhanney. Should these soils be mixed, additional environmental sampling may be
  required for off-site disposal.
- The CM will implement ESC measures as outlined in the Project CEMP.
- Relocation of stockpiled soil must not occur until approval from BC Transit or McElhanney

### 5.6. CHANCE FIND SOIL CONTAMINATION AND CHARACTERIZATION REQUIREMENTS

The Contractor will visually screen soil generated from the utility trench or other construction excavations to identify any suspect material for chance find contamination. Any suspected soils with odours, visible staining, debris, or sheen, will require the material to be segregated and handled as suspect contaminated soil. BC Transit and McElhanney should be notified immediately upon should suspected contamination be encountered.

### 5.7. CHANCE FIND ARCHAEOLOGICAL AND CULTURAL RESOURCES

If suspect or known archaeological and cultural resources be encountered during soil disturbance at the site during demolition and decommissioning, the Project chance find procedure is to be followed.

# 6. Surface and Groundwater Management

There is a potential for precipitation to accumulate within the Project during periods of heavy rainfall. The Contractor will be required to check the daily forecast for periods of heavy rainfall and schedule work accordingly to reduce the need for dewatering surface water runoff within the excavation areas.

Groundwater seepage should be anticipated for this Project given previous observations and the depth of the excavation work. If required, management of groundwater seepage into an excavation or area of construction activity requires proper handling procedures. The following BMPs have been designed to assist with the management of surface and groundwater generated in the Site:

The water quality standards for the Site that must be maintained during construction are listed in Section 6.5 of the CEMP. BMPs for water quality are listed in Table 6.1 of the CEMP. Additional details may include:

- **Divert:** Diverting surface runoff around the Site so that clean water does not flow into an excavation,
  - Sandbag barriers can be used on hard surfaces for water diversion to capture or deflect water flowing towards open excavations even under high rainfall.
  - Site grading to divert water around and away from the excavation area prior to entrance.
- Cover: Cover excavation areas with steel plating or appropriate alternative or stop work due to heavy rainfall to reduce the volume of surface water entering the trench,
- Minimize: Excavations are to be kept to the minimum size practical to reduce the potential capture of groundwater and surface water, and
- Pump, Pump and Treat or Haul: If rainwater accumulates within the excavation area to a level which
  inhibits construction, the Contractor is to discuss this situation with BC Transit. BC Transit may decide
  that if the water requires pumping it may be removed via pumping to the storm sewer or via hydrovac
  truck and disposed of as appropriate depending on the water quality. If confirmed to be contaminated,
  construction water will require disposal at an appropriate facility.

### 6.1. DISCHARGE OF GROUNDWATER:

Historical and recent groundwater monitoring has identified groundwater levels ranging from 0.11 m bgs at MW5 to 3.9 m bgs at MW4. Groundwater results have not identified contaminates of concern. Regardless of when the demolition and decommissioning for the Project is undertaken, there does remain a potential to encounter groundwater and contaminated groundwater from seepage and/or contaminated water entering the open excavations from runoff due to precipitation.

Depending on the chemical characterization of the groundwater, water generated during Project works may potentially be discharged to a nearby storm or sanitary sewer system. Water discharges to the storm system from the Construction Site shall meet federal, provincial, regional district and municipal standards prior to release, for the protection of water quality and human health. Saanich and Capital Regional District (CRD) have bylaws covering the discharge of water to storm and sanitary sewer systems. The District of Saanich Bylaws No. 7501 & 9837 and CRD Waste Discharge Bylaw No. 2922.

If required, BC Transit may direct the CM or the Contractor to retain a Qualified Environmental Professional (QEP) to carry out water quality testing to determine appropriate disposal options and notify BC Transit. Should testing be required the CM will be responsible for managing the storage and discharge of any groundwater requiring discharge from the Site. If testing identifies the presence of contamination within the work areas the CM will be engaged to determine possible treatment and/or disposal options to prevent the discharge of contaminates to the Saanich stormwater system. Ongoing testing requirements will adhere to any discharge permit(s) that may be received for the Project works. If retained the CM's or Contractor's QEP will monitor and observe discharged water for signs of potential contamination.

# 7. Professional Statement

The information presented in this report is for use by the BC Transit for the Saanich Transit Centre Project and their representatives. The plan is subject to change and should be treated as a living document. Any revisions should incorporate relevant additional information as it becomes available based on field conditions encountered during the project work. Any changes to this SMP should be completed by McElhanney and presented to the BC Transit for acceptance.

We trust this information is sufficient at this time. Should there be any questions regarding the information within, please do not hesitate to contact the undersigned.

Respectfully submitted,

McElhanney Ltd.

Prepared by

3975

b Comr

Jack Common

Oct. 15, 2025

OF AGY

Jack Common, P.Ag Environmental Scientist

jcommon@mcelhanney.com

Reviewed by

Brian White, P.Eng
Division Manager,
Senior Environmental Engineer
bwhite@mcelhanney.com

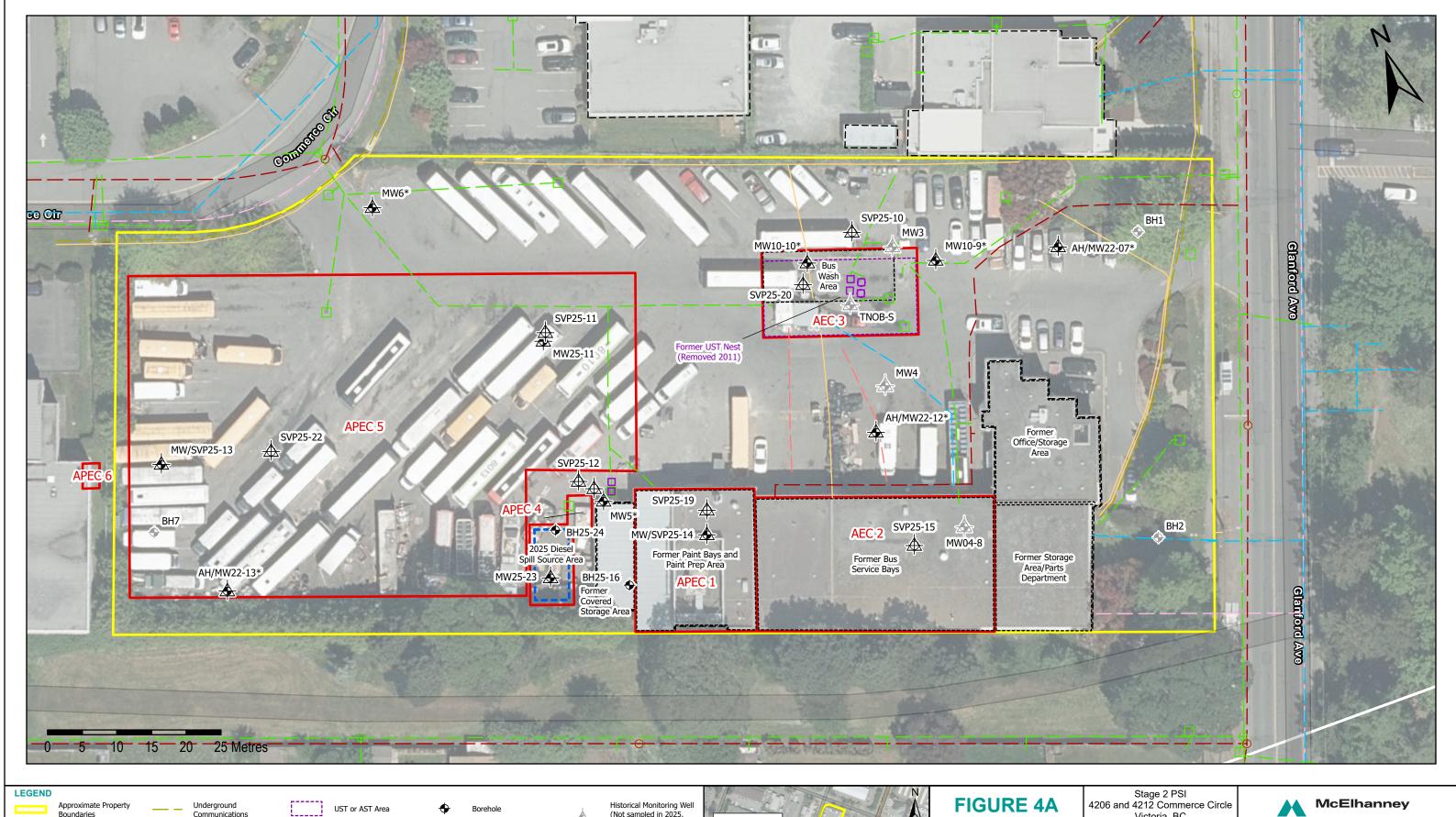
# 8. Limitations of Report

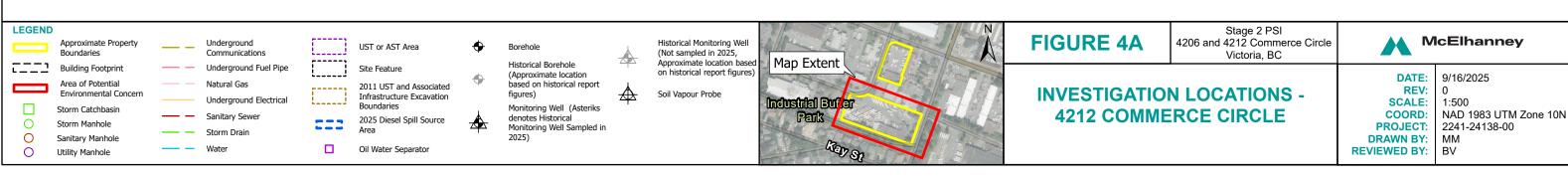
The Soil Management Plan was prepared for the exclusive use of the BC Transit, its assignees, and representatives, and is intended to outline performance-based environmental requirements, standard protocols, and mitigation measures to be implemented during construction at the Saanich Transit Centre Project.

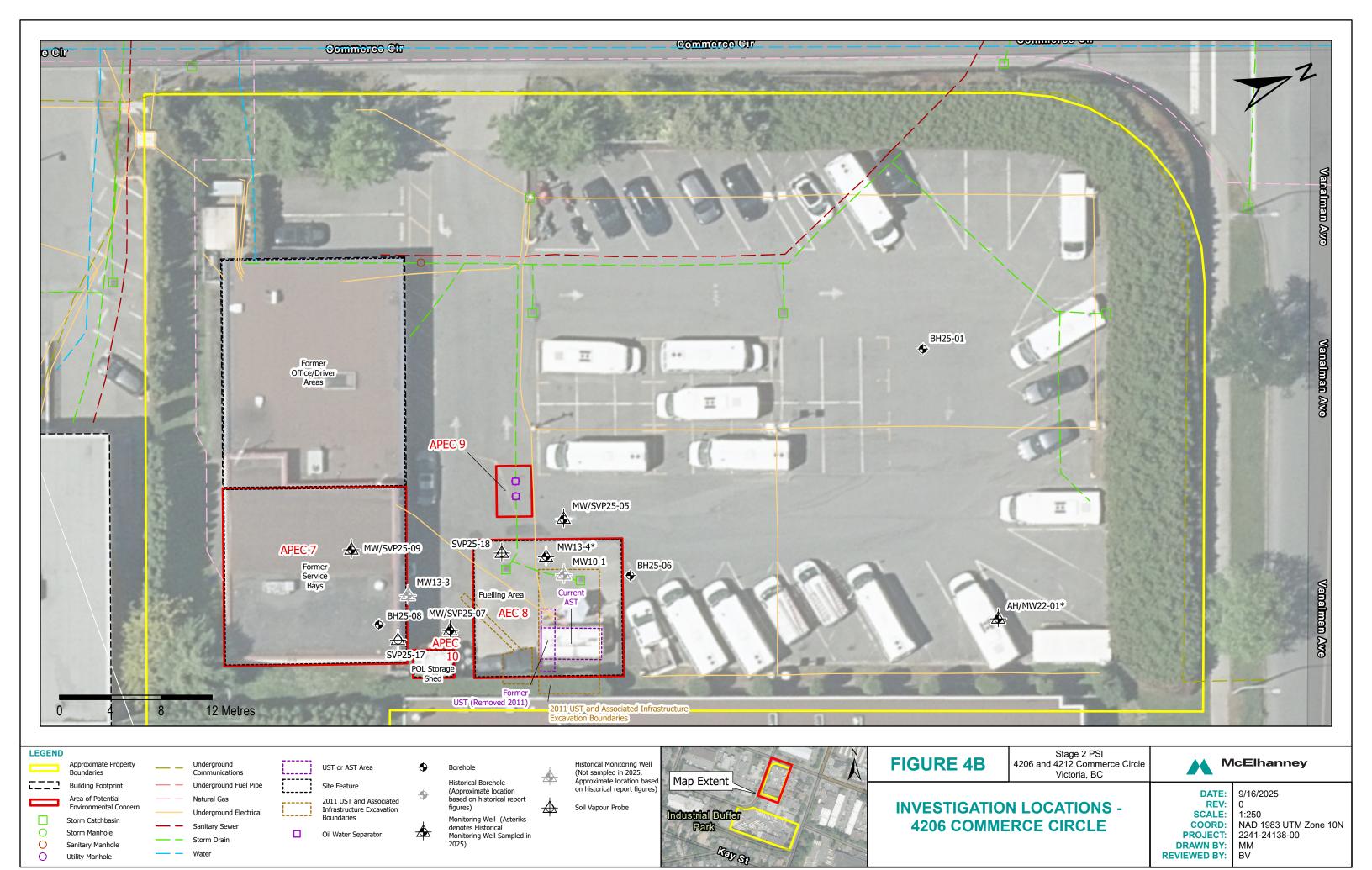
The guidance and findings documented in this report have been prepared for the specific application to this Project. This SMP has been developed in a manner consistent with the level of care normally exercise by environmental professionals currently practicing under similar conditions in BC.

In developing this SMP, McElhanney has relied in good faith on information provided by the BC Transit. We accept no responsibility for any deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The SMP may be revised, at the request of the BC Transit, should new information, discovered in future work from other investigations, require amendments prior to any reliance upon the information presented herein.


# 9. Legal Disclaimer

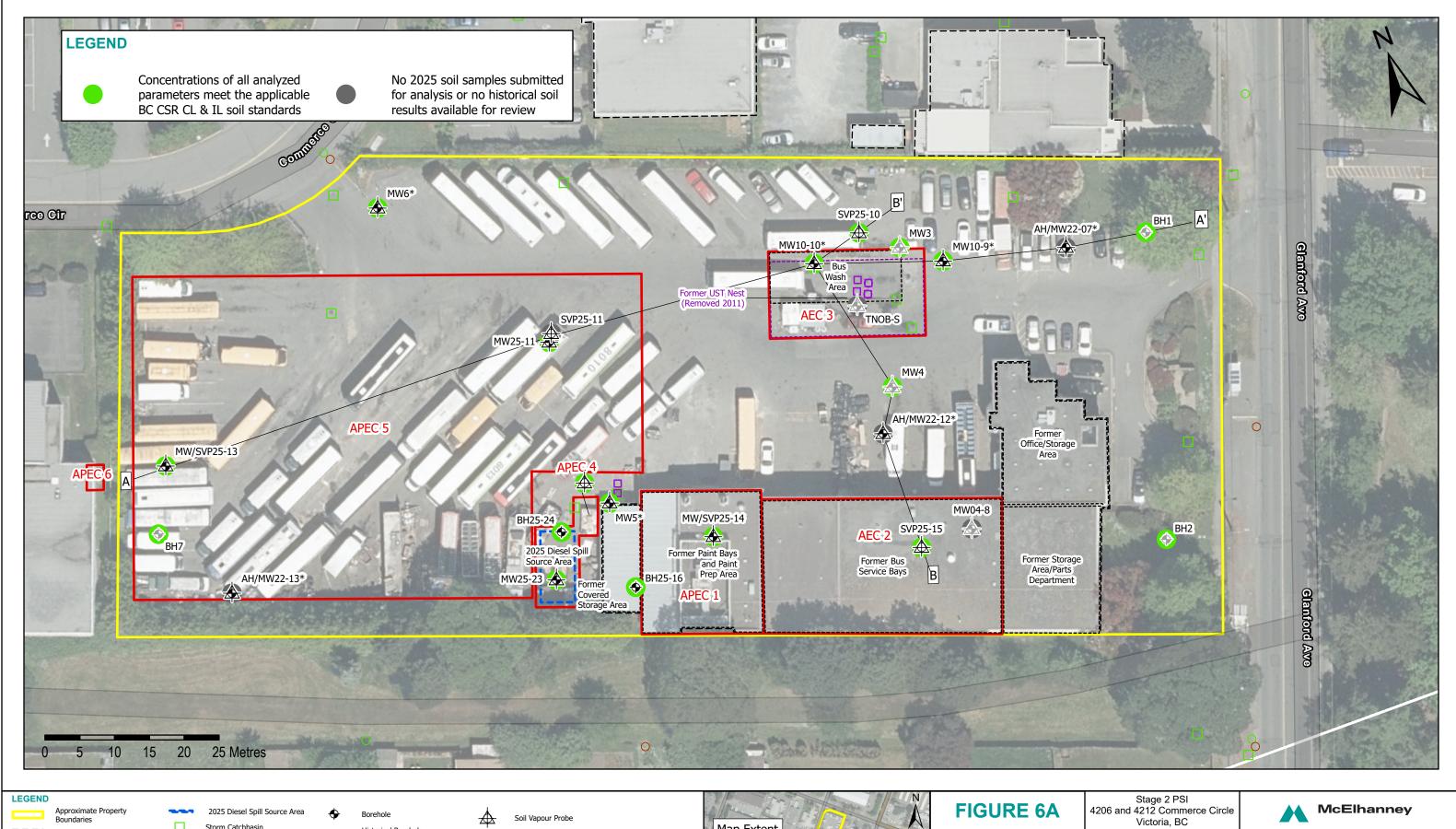

This report was prepared by McElhanney Ltd. for the exclusive use of the BC Transit and may not be reproduced in whole or in part without the prior written consent of McElhanney or used or relied upon in whole or in part by a party other than the BC Transit and their assignees and representatives for the Project. Any unauthorized use of this report, or any part hereof, by a third party, or any reliance on or decisions to be made based on it, are at the sole risk of such third parties. McElhanney accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, in whole or in part.


# 10. References

- BC Ministry of the Environment and Climate Change Strategy (BC ENV). (2004). Environmental Management Act.
- BC Ministry of the Environment and Climate Change Strategy (BC ENV). (2021). Contaminated Sites Regulation, BC Reg. 375/96.
- BC Ministry of the Environment and Climate Change Strategy (BC ENV). (n.d.). BC Hazardous Waste Regulation BC Reg 63/88.
- BC Ministry of the Environment and Climate Change Strategy (BC ENV). (2023). Protocol 13 For Contaminated Sites Screening Level Risk Assessment (Version 6).
- McElhanney Ltd. June 10, 2025 (McElhanney, 2025). *Preliminary Geotechnical Assessment, Rev.1 Saanich Transit Centre, Saanich, BC.*
- McElhanney Ltd. September 18, 2025 (McElhanney, 2025). Stage 2 Preliminary Site Investigation 4206 and 4212 Commerce Circle (4196 Glanford Avenue) Victoria, BC.
- Aqua-Tex Scientific Consulting Ltd. (Aqua-Tex, 2025) March 24, 2025. BC Transit Saanich Transit Centre Construction Environmental Management Plan
- McElhanney Ltd. September 18, 2025 (McElhanney, 2025). Stage 1 Preliminary Site Investigation for 4206 and 4212 Commerce Circle (4196 Glanford Avenue), Victoria, BC.
- McElhanney Ltd. September 18, 2025 (McElhanney, 2025). Phase I Environmental Site Assessment for 4210 Commerce Circle, 4212 Glanford Avenue and 4216 Glanford Avenue), Victoria, BC.










**REVIEWED BY:** 

0

Utility Manhole





Building Footprint

UST or AST Area

2011 UST and Associated

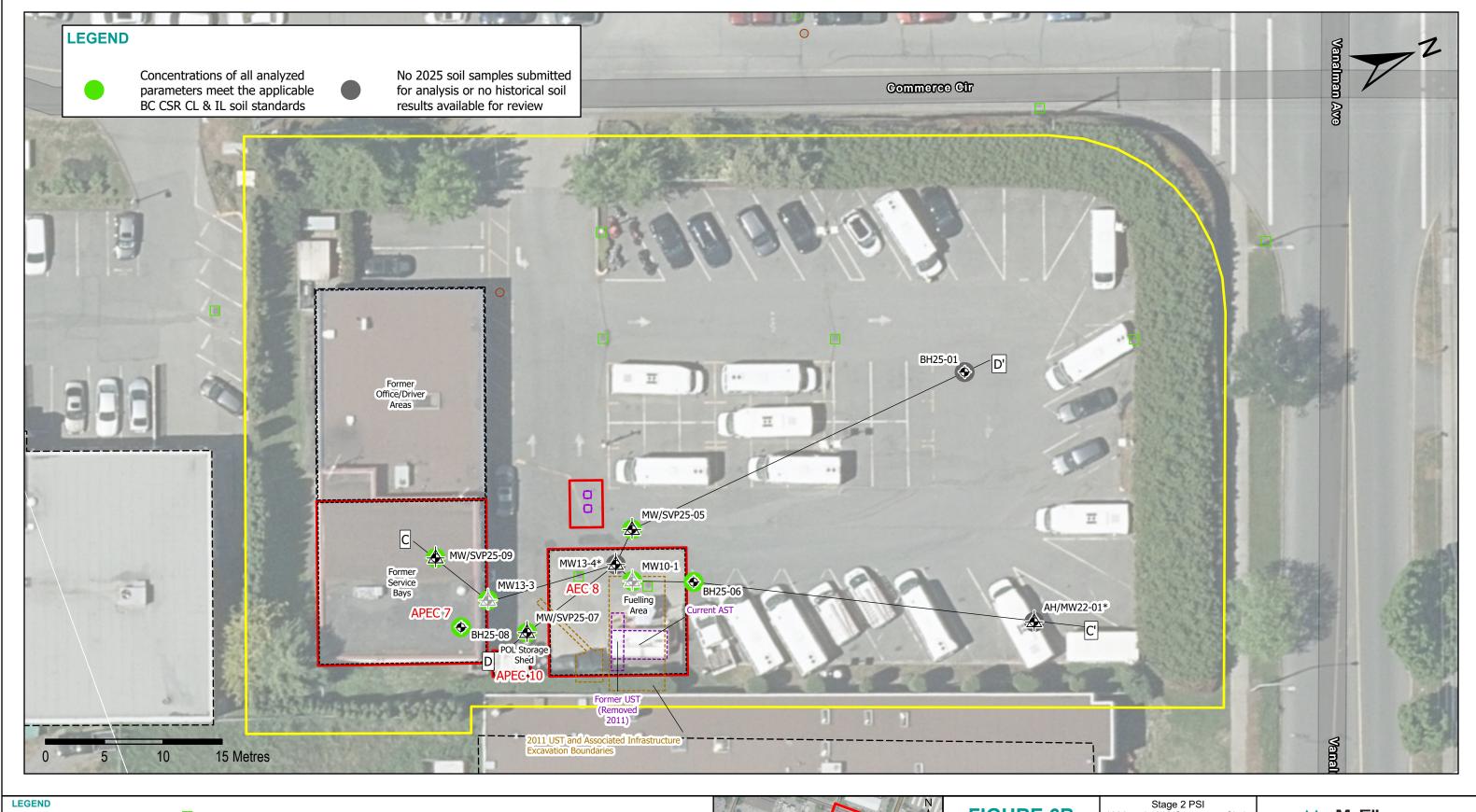
Storm Catchbasin Storm Manhole Sanitary Manhole

Utility Manhole

Oil Water Separator Cross Section Alignment (See Figure 7A & 7B)

Historical Borehole (Approximate location based on nistorical report figures)

Monitoring Well (Asteriks denotes Historical Monitoring Well Sampled in 2025)


Historical Monitoring Well (Not sampled in 2025, Approximate



**SOIL ANALYTICAL RESULTS -4212 COMMERCE CIRCLE** 

DATE: REV: SCALE: COORD: **PROJECT: DRAWN BY: REVIEWED BY:** 

9/16/2025 1:500 NAD 1983 UTM Zone 10N 2241-24138-00 MM



Approximate Property Boundaries

Area of Potential Environmental Concern

UST or AST Area []]]

Site Feature 2011 UST and Associated Infrastructure Excavation

0

Storm Catchbasin Storm Manhole Sanitary Manhole

0

Utility Manhole

Oil Water Separator

Cross Section Alignment (See Figure 7A & 7B)



Monitoring Well (Asteriks denotes Historical Monitoring Well Sampled in 2025)



Historical Monitoring Well (Not sampled in 2025, Approximate location based on historical report figures)



# FIGURE 6B

**4206 COMMERCE CIRCLE** 

4206 and 4212 Commerce Circle Victoria, BC



### **McElhanney**

REV: SCALE: COORD: PROJECT: **DRAWN BY:** 

**REVIEWED BY:** 

DATE: 9/16/2025 1:300 NAD 1983 UTM Zone 10N 2241-24138-00 MM





Contact
Brian White, P.Eng
778-746-7409
bwhite@mcelhanney.com



